PRML Notes - 1.1 Introduction

Chilly_Rain posted @ 2012年1月20日 18:52 in Pattern Recognition and Maching Learning with tags 简介 模式识别 机器学习 , 1999 阅读

模式识别的目标

自动从数据中发现潜在规律,以利用这些规律做后续操作,如数据分类等。

模型选择和参数调节

类似的一族规律通常可以以一种模型的形式为表达,选择合适模型的过程称为模型选择(Model Selection)。模型选择的目的只是选择模型的形式,而模型的参数是未定的。

从数据中获得具体规律的过程称为训练或学习,训练的过程就是根据数据来对选定的模型进行参数调节(Parameter Estimation)的过程,此过程中使用的数据为训练数据集(Training Set)。

对于相同数据源的数据来讲,规律应该是一般的(泛化Generalization),因此评估一个学习结果的有效性可以通过使用测试数据集(Testing Set)来进行的。

预处理

对于大多数现实中的数据集来讲,使用其进行学习之前,通常需要进行预处理,以提高学习精度及降低学习的开销。

以图像识别为例,若以像素做为一个特征,往往一幅图像的特征就能达到几万的数量级,而很多特征(如背景色)都是对于图像辨识起不到太大作用的,因此对于图像数据集,预处理过程通常包括维数约减(特征变换,特征选择),仅保留具有区分度的特征。

文本数据分类任务中,对训练文本也有类似的处理方式,只不过此时扮演特征的是单词,而不是像素值。

监督学习和非监督学习

输入向量(input vector):x_1, ... , x_n,响应向量(target vector):t_1, ... , t_n

监督学习采用的数据集是包括输入向量和目标向量的,其目标就是发现二者之间的关系,学习的结果表示为函数y(x),使用函数的输出来近似响应值。如果{t_i}为离散值,则此类学习任务称为分类(classification),若为连续值则称为回归(regresssion)。

非监督学习使用的数据集只包括输入向量,目的是直接探索数据的内在结构。发现数据中相似的簇的任务称为聚类(clustering),计算数据分布情况的任务称为密度估计(density estimation),将数据映射到三维及以下的任务称为可视化(visulization)。

还有一种学习形式,称为加强学习(reinforcement learning),指在一定的环境下,发现最合适的决策来最大化收益。通常这类学习任务需要在使用(exploit)和探索(explore)之间做出权衡。

Example:多项式回归

给定了数据集(输入向量和响应向量),首先进行模型选择,选定多项式的阶数。高阶的多项式模型是包含低阶多项式模型的(可将高阶项的系数设为零,从而退化成低阶模型),因此高阶模型拥有比低阶模型更强的拟合数据的能力。使用相对于数据来讲过强的模型,会使模型不但捕获数据中的规律,而会拟合进噪声,造成泛化能力不佳,这种情况称为过拟合(overfitting)。相反地,如果使用了相对于数据来讲太弱的模型,就无法捕获数据中的规律,这种情况称为欠拟合(underfitting)。选择合适的模型阶数是学习成功的前提条件,模型选择的方法包括基于经验的bootstrap,cross-validation以及基于信息论的AIC,BIC,MDL等。

在选好模型阶数,确定模型之后,下一步的工作就是参数调节(或称参数估计)。成熟的模型一般都有其相应的参数估计方法,如GMM-EM,RBF-BP,AR-YW等。对于多项式模型可采取较为一般的方法,即定义一个误差函数,通过求导数来计算得到误差最小值时的参数值。

Sum-of-square误差函数:$$E=\frac{1}{2} \sum_{i=1...n}{(y(x_i)-t_i)^2}$$

Root-mean-squre误差函数:$$E_{RMS}=\sqrt{2E/N}$$(单样本误差)

当过拟合发生时,训练得到多项式曲线表现得波动极大,相应地模型参数的模也很大。当数据量足够大时,模型发现过拟合的概率降低,因为模型总是在参数估计中尽可能地去迎合数据,从这个角度讲,数据越多,对模型的约束就越大。

如果希望使用一个相对复杂的模型,而不产生过似合现象,一种可行的方法是在误差函数中加入规则化项(regularization term),以约束模型系数的模。使用2-范数来做规则化项,得到修改后的Sum-of-square误差函数表示为

$$E=\frac{1}{2} \sum_{i=1...n}{(y(x_i)-t_i)^2} + \frac{\lambda}{2} {||w||}^2$$

使用此误差函数进行学习的过程也称为岭回归(ridge-regression)或者权重退化(weight decay)。本质上,规则化项的引入是把一个参数转化为了另一个参数,即将模型阶数M转化成了系数$$\lambda$$,并没有使学习过程变成更有效,

 

Avatar_small
SBI savings account 说:
2022年8月10日 16:21

Bank savings interest rate is valid, if the customer maintained the minimum amount in their savings accounts, and the Interest Rate of State Bank of India varies every year based on budget session and thus by having your savings account will also earn you extra money. SBI savings account interest rate This rate is paid by financial institutions based on the deposit done in a once saving account and thus the amount gets added in the current principal savings balance.

Avatar_small
Rajasthan Board Mode 说:
2022年8月21日 13:53

Rajasthan Board Model Paper 2023 Class 2 Pdf Download with Answers for Rajasthani Medium, English Medium, Hindi Medium, Urdu Medium & Students for Small Answers, Long Answer, Very Long Answer Questions, and Essay Type Questions to Term1 & Term2 Exams at official website. Rajasthan Board Model Paper Class 2 New Exam Scheme or Question Pattern for Sammittive Assignment Exams (SA1 & SA2): Very Long Answer (VLA), Long Answer (LA), Small Answer (SA), Very Small Answer (VSA), Single Answer, Multiple Choice and etc.

Avatar_small
Junior Dakil Result 说:
2022年9月03日 01:01

In the Bangladesh Education System, Barisal board has a good record and the Barisal Division also successfully completed JSC and JDC terminal examination tests 2022 as per schedules along with all other educational boards of the country, Junior Dakil Result Barisal Board and there are a huge number of general and mass education students have appeared to the Grade 8 final exams from the division.The Bangladesh Secondary and Higher Secondary Education, Barisal Board has successfully completed the Junior Certificate & Junior Dakhil Terminal exams on November like as previous years, and the school education department has to conduct evaluation process through answer sheet corrections for both general and mass education JSC & JDC exam answer sheet to calculate subject wise marks of the student, once the evaluation is completed the JSC Result 2022 Barisal Board is announced with full mark sheet with total CGPA of the student.

Avatar_small
MPPTCL Pay Slip 2023 说:
2022年10月28日 14:57

Employee payslips monthly and annual pay slip has a significant impact on every employee. Some seek the pay slips to follow up on the salary details, get new employment, or get loans from financial institutions. Employees at the MPPTCL can access their monthly and annual pay slips easily from the website MPPTCL Pay Slip 2023. The website is developed to cater to all Madhya Pradesh Power Transmission Company Ltd (MPPTCL) employees’ salary needs.

Avatar_small
FTTH BSNL 说:
2023年2月08日 16:45

BSNL is installing Bharat Net a country-wide fiber optic cable for internet connectivity in many of the panchayats, and on the other hand, ISP brought the same fibernet technology to your doorstep directly and through TIPs. FTTH BSNL Telecom Infrastructure Providers (TIPs) with new BSNL Fiber plans covering many isolated pockets in all BSNL circles of the country for 50Mbps to 300 Mbps internet speed on providing with BSNL Fiber Plans along with FREE ONT as per the possibility.

Avatar_small
Odisha 7th Class Sy 说:
2023年9月19日 18:09

BSE Odisha Provides the Syllabus for All the 7th This new Syllabus are Designed Strategically by a Team of Subject Experts and are Prescribed by the Department of School and Mass Education, Government of Odisha level Syllabus for the Children of Odisha has been developed with the supervision of the Department of School and Mass Education, Government of Odisha.one Needs to have Odisha 7th Class Syllabus 2024 a good Understanding of the Odisha Exam Pattern and Syllabus 2024, If the Students know the Syllabus of the Exam, then they can Direct their Preparation in the best way.BSE Odisha Class Syllabus 2024 is Developed by Board of Secondary Education, Odisha is a Statutory body Under State Governmental Board of School Education.


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter